The realization space is
  [1   1   x1^2 - x1 - 1   0   0   1           1    x1^3 - 2*x1^2 + 1        0   x1 - 1           1]
  [1   0       x1^2 - x1   1   0   1           0   x1^3 - 2*x1^2 + x1        1       x1          x1]
  [0   0               0   0   1   1   x1^2 - x1     x1^3 - x1^2 - x1   x1 - 1       x1   x1^2 - x1]
in the multivariate polynomial ring in 1 variable over ZZ
within the vanishing set of the ideal
Ideal (-x1^9 + 6*x1^8 - 14*x1^7 + 17*x1^6 - 12*x1^5 + 2*x1^4 + 6*x1^3 - 4*x1^2)
avoiding the zero loci of the polynomials
RingElem[x1, x1 - 2, x1 - 1, x1^2 - x1 - 1, 2*x1 - 3, x1^3 - 2*x1^2 + x1 - 1, x1^4 - 2*x1^3 - 2*x1^2 + 5*x1 - 1, x1 + 1, x1^2 - 2]